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1.[14] Let C be the curve with vector equation r(t) =<
1

3
t3, t2, 2t > ; and let P (

1

3
, 1, 2)

be a point on the curve C .

(a) Find the unit tangent vector of the curve C at the point P .

(b) Find the unit normal vector of the curve C at the point P .

(c) Find the arc length of the curve C from the origin to the point P .

(d) Find equation of the normal plane of the curve C at the point P .
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2.[8] Show that f(x, y) = x e2x−y is differentiable at (1, 2) and find its linearization.
Then use it to approximate f(1.01, 2.03) .
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3.[10] Evaluate each of the following limit or explain why it does not exist. Show your
work.

(a) lim
(x,y)→(1,0)

2x4 + x2y2 − 2x2 − y2

2x2y2 − x2 − 2 y2 + 1

(b) lim
(x,y)→(0,0)

(
√
x2 + y2 ) ln(x2 + y2)
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4.[8] Let u = r3 + 1 and r =
√
x2 + y2 + z2 . Show that

( ∂u
∂x

)2
+
( ∂u
∂y

)2
+
( ∂u
∂z

)2
=
( ∂u
∂r

)2
.

5.[10] If f(u) and g(v) are differentiable functions, find the value of

∇f(x2 − 2y2) • ∇ g(x2 y) .
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6.[12] Find the absolute maximum and the absolute minimum of the function

f(x, y) = x2 + 2xy + 3y2

over the closed triangular region with vertices (−1, 1) , (2, 1) and (−1,−2).



DATE: December 10 , 2010

EXAMINATION: Multivariable Calculus
COURSE: MATH 2720

UNIVERSITY OF MANITOBA
FINAL EXAMINATION

PAGE: 6 of 11
TIME: 3 hours

EXAMINER: G.I. Moghaddam

7.[8] Evaluate the following double integral.∫ 2

0

∫ √2−y
0

e(2x−
1
3
x3) dx dy

8.[8] Evaluate the following triple integral.∫ 1

0

∫ x2

1

∫ x+3y

0

(2x2y) dz dy dx
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9.[10] Find the volume of the solid bounded by the circular paraboloids z = 2−x2− y2
and z = x2 + y2 .
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10.[10] Consider a thin plate with mass per unit area ρ(x, y) = x2 + y such that the
edges of the plate are defined by the parabola y = (x− 2)2 and the line y = x.
Set up but do not evaluate double integrals for each of the following :

(a) Moment of inertia of the plate about the origin.

(b) Center of mass of the plate.



DATE: December 10 , 2010

EXAMINATION: Multivariable Calculus
COURSE: MATH 2720

UNIVERSITY OF MANITOBA
FINAL EXAMINATION

PAGE: 9 of 11
TIME: 3 hours

EXAMINER: G.I. Moghaddam

11.[10] Evaluate the line integral
∫
C
F · dr where F(x, y, z) = sinx i + cos y j + xz k

and C is the curve with vector representation

r(t) = t3 i − t2 j + tk , 0 ≤ t ≤ 1 .
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12.[12] Let C be the counterclockwise boundary of the region

D = {(x, y) | 0 ≤ y ≤
√

4− x2 } .

(a) Sketch C. Is C a simple closed curve ? Why?

(b) Using Green’s Theorem , evaluate the line integral∮
C

( 1− 3x4y ) dx + ( 3xy4 + 2x3y2 ) dy .
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Answers:

Q1) (a) T̂ (1) =<
1

3
,

2

3
,

2

3
> , (b) N̂(1) =<

2

3
,

2

3
, −1

3
>

(c)
7

3
, (d) 3x+ 6y + 6z = 19 .

Q2) L(x, y) = 3x− y and f(1.01, 2.03) ≈ 1 .

Q3) (a) limit is −2 , (b) limit is 0.

Q4) ( ∂u
∂x

)2
+
( ∂u
∂y

)2
+
( ∂u
∂z

)2
= (3r2)2 =

( ∂u
∂r

)2
.

Q5) ∇f(x2 − 2y2) • ∇ g(x2 y) = 0 .

Q6) Maximum of f is 11 which occurs at (2, 1) .
Minimum of f is 0 which occurs at (0, 0) .

Q7)
∫ 2

0

∫ √2−y
0

e(2x−
1
3
x3) dx dy = e

4
√
2

3 − 1.

Q8)
∫ 1

0

∫ x2

1

∫ x+3y

0
(2x2y) dz dy dx = −41

72

Q9) V = π

Q10) (a) IO =

∫ 4

1

∫ x

(x−2)2
(x2 + y2)(x2 + y) dy dx ,

(b) m =

∫ 4

1

∫ x

(x−2)2
(x2 + y) dy dx and x̄ =

1

m

∫ 4

1

∫ x

(x−2)2
x(x2 + y) dy dx and

ȳ =
1

m

∫ 4

1

∫ x

(x−2)2
y(x2 + y) dy dx

Q11)

∫
C

F · dr =
6

5
− cos 1− sin 1

Q12) (a) It is closed and simple (it does not intersect itself) .

(b)

∮
C

( 1− 3x4y ) dx + ( 3xy4 + 2x3y2 ) dy = 32π


